1. a) Write the Laplace equation in incremental form and
b) solve it for the new temperature

\[\alpha \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) = \frac{\partial T}{\partial t} \]

2) \[\alpha \left[\frac{T_{+x} - 2T_{-x} + T_{-y}}{\Delta x^2} + \frac{T_{+y} - 2T + T_{-y}}{\Delta y^2} \right] = \frac{T' - T}{\Delta t} \]

b) If \(\Delta x = \Delta y \)

\[T' = T + \frac{\alpha \Delta x}{\Delta x^2} (T_{+x} + T_{-x} + T_{+y} + T_{-y} - 4T) \]

\[\# \# \# \text{, Then} \]

\[T' = \frac{T_{+x} + T_{-x} + T_{+y} + T_{-y}}{4} \]
2. Sketch a spreadsheet solution to determine temperature profiles in a one-dimensional system as a function of position and time. Assume the solid of interest is 10 cm thick. Use 10 increments. The thermal diffusivity is 0.10 cm²/sec. Use the maximum permissible time step. Show:
 a) all pertinent equations
 b) boundary conditions,
 c) initial conditions, and
 d) the value of the time step.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DX</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>α</td>
<td>0.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>dt</td>
<td>(\frac{dx}{2})²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>time</td>
<td>0</td>
<td></td>
<td>fill</td>
<td>fill</td>
</tr>
<tr>
<td>6</td>
<td>BC1</td>
<td>IC</td>
<td>fill</td>
<td>fill</td>
<td>fill</td>
</tr>
<tr>
<td>7</td>
<td>=A6+BE</td>
<td></td>
<td>fill</td>
<td>fill</td>
<td>fill</td>
</tr>
<tr>
<td>8</td>
<td>Fill</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\text{Cell} C7 \Rightarrow \frac{B6 + D6}{2} \]

\[
\text{Cell} A7 \Rightarrow A6 + dt\]
3. (15) Given the data below, what is the largest time step allowed in the simple explicit method of solving a 1D USS HT problem.

\[\alpha = 0.4 \text{ cm}^2/\text{sec} \]
\[\Delta x = 0.2 \text{ cm} \]

\[\frac{\alpha \Delta t}{\Delta x^2} = \frac{1}{2} \quad \Delta t = \frac{1}{2} \frac{\Delta x^2}{\alpha} \]

\[= \frac{1}{2} \frac{0.2^2}{0.4 \text{ cm}^2/\text{sec}} \]

4. Describe the Dufort-Frankel Method of solving a 1D USS HT transfer problem.

\[\Delta t = 0.05 \text{ sec} \]

\textbf{Not on this HG}

\textbf{2001 Spring}
5. The steady state temperature profile for the plate below is desired. There is a convection boundary condition on the left side as shown: Write enough equations to show how to solve for the temperature profile.

\[
T_{i,j} = \frac{T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1}}{4}
\]

\[
- \frac{q_{conv}}{k} = A
\]

\[
-\left[-k \frac{T_{i+1,j} - T_{i,j}}{\Delta x}\right] = h (T_{i,j} - T_{in})
\]

\[
+ k \frac{T_{i,j} - T_{in}}{\Delta x} = h (T_{i,j} - T_{in})
\]

\[
T_{1,j} = \frac{h T_{in} + k \Delta x T_{2j}}{h + k \Delta x}
\]

\[
T_5 = \frac{h T_{in} + k \Delta x T_{4j+1}}{h + k \Delta x}
\]