1. Which of the following is NOT one of the five steps to deriving a differential equation?
 A. Substitute the flux equation (i.e. Fourier’s Law, Newton’s Law of Viscosity, etc.)
 B. Make a sketch
 C. Divide by the independent ∆’s and take the limit as they go to zero
 D. Use the BC’s to evaluate C₁ and C₂

2. What is the shape of a differential element for a three-dimensional heat conduction problem in rectilinear coordinates (3D USS HT)?
 A. An infinite flat sheet ∆x thick
 B. An infinitely long French-fry-shaped element with a cross section ∆y by ∆x
 C. A small cube ∆x by ∆y by ∆z
 D. None of the above

3. What is the shape of a differential element for a heat conduction problem in a cylinder in which the temperature varies in both the radial and axial directions? No generation.
 A. A solid cylinder L long with
 B. A tube L long with a radius r and a wall thickness of ∆r
 C. A ring ∆z long with a radius r and wall thickness of ∆r
 D. A thin disk ∆z thick with a radius r

4. What shape of the differential element for a heat conduction problem involving a sphere in which the temperature varies with r?
 A. A solid sphere with radius ∆r
 B. A solid sphere with radius r
 C. A spherical shell ∆r thick with radius r
 D. A small element ∆θ, dφsinθ, by ∆r at radius r.

5. What is the area through which the radial flux (r-dir) moves in a cylindrical element L long?
 A. πrL
 B. 2πrL
 C. πr²
 D. 2πrΔr
6. What is the area through which an axial flux (z-dir) moves through a cylindrical element \(\Delta z \).
 A. \(\pi r^2 \)
 B. \(2\pi r \Delta z \)
 C. \(2\pi r \Delta r \)
 D. \(2\pi r \Delta L \)

7. What is the volume of a spherical differential in which \(r \) is the only independent position variable?
 A. \(\pi r^3 \)
 B. \(4\pi r^2 \Delta r \)
 C. \(2\pi r \Delta z \)
 D. \((4/3)\pi r^2 \Delta r \)

8. Which is the correct equation for a heat balance for a cylindrical coordinate heat conduction problem in which temperature varies in the radial direction only? No generation.
 A. \(\left[(2\pi L r q_r)_r - (2\pi L r q_r)_r+\Delta r \right] \Delta t = 2\pi L r \Delta r \rho C P \left(T_{r+\Delta r} - T_r \right) \)
 B. \(2\pi L \left((q_r)_r - (q_r)_{r+\Delta r} \right) \Delta t = 2\pi L r \Delta r \rho C P \left(T_{r+\Delta r} - T_r \right) \)
 C. \(2\pi L \left((r q_r)_r -(r q_r)_{r+\Delta r} \right) \Delta t = \pi r^2 L \rho C P \left(T_{r+\Delta r} - T_r \right) \)
 D. None of the above

9. Which is the correct equation for a rectilinear coordinate heat conduction problem in which temperature varies in the x and y directions only? No generation. The solid is W wide (x-dir), H high (y-dir), and L long (z-dir).
 A. \(\left[L \Delta y \left(q_y \mid y - q_y \mid y+\Delta y \right) + L \Delta x \left(q_y \mid y - q_y \mid y+\Delta y \right) \right] \Delta t = L \Delta x \Delta y \rho C P \left(T_{x+\Delta x} - T_x \right) \)
 B. \(W \Delta x \left(q_y \mid y - q_y \mid y+\Delta y \right) + W \Delta y \left(q_y \mid y - q_y \mid y+\Delta y \right) \Delta t = W \Delta x \Delta y \rho C P \left(T_{y+\Delta y} - T_y \right) \)
 C. \(\Delta y \left(q_y \mid y - q_y \mid y+\Delta y \right) + \Delta x \left(q_y \mid y - q_y \mid y+\Delta y \right) \Delta t = \Delta x \Delta y \rho C P \left(T_{y+\Delta y} - T_y \right) \)
 D. None of the above

10. What is the definition of the derivative \(\frac{dy}{dx} \)?
 A. \(\text{Lim as } x \to 0 \frac{y \mid_{x+\Delta x} - y \mid_x}{\Delta x} \)
 B. \(\text{Lim as } x \to 0 \frac{y \mid_x - y \mid_{x+\Delta x}}{\Delta x} \)
 C. \(\text{Lim as } x \to 0 \frac{y \mid_{x+\Delta x} - y \mid_x}{\Delta y} \)
 D. None of the above
Correct Answers: 1-D 2-C 3-C 4-C 5-B 6-C 7-B 8-A 9-A 10-D

Adjustments:
#6 could be A since it was not specified that there was any change in the r direction
#8 20% credit will be given for B if you promise to never make that mistake again
#10 50% credit will be given for A since it is correct except for no delta in the limit