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1. Derive the Heat Equation for a one-dimensional, cylindrical coordinate, unsteady state heat conduction problem (i.e. – 1D USS HT   Cyl).

As with all differential equation derivations, this one follows the same five steps:

1. Draw a sketch.

2. Establish an incremental element that has an incremental thickness in each direction of change.
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Finite element showing heat fluxes






3. Perform a balance on the increment for the extensive quantity of interest (force, heat, etc.).

4. Divide through by all incremental terms (X, y, t, etc.) and take the limit as each goes to zero to obtain differential terms.

5. Substitute for any flux terms (q, ) the fundamental law that relates these fluxes to intensive property gradients. 

1 &2  The direction of change is r.  Heat Balance
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4. Divide by 2Lrt 
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In the limit as each delta term approaches 0
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5. Substitute Fourier’s Law of Heat Conduction: 
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Expanding the first term and dividing by r gives
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where 
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2
Sketch a spreadsheet solution to determine temperature profiles in a one-dimensional rectilinear solid as a function of position and time (1D USS HT).  The solid’s initial temperature is 0 and the end temperatures are both 100 for t ≥ 0.  Assume the solid of interest is 20 cm thick.  Use 10 increments.  The thermal diffusivity is 0.125 cm2/sec.  Use the maximum permissible time step.  Show 

a)
x,

b)
t,

c)
initial condition,

d)
the boundary conditions, and

e) the pertinent equations for computation.  You may indicate “Fills” to conserve effort writing.

Answer: (active Excel Spreadsheet)
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3. Write the finite difference approximation for the following:

BONUS


a) Forward 
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O(hN),  N=___1__
b) Central 
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O(hN),  N=___2__
c) Backward 
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O(hN),  N=___1__
d) Central 
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O(hN),  N=___2__
4.
Indicate on the sketch below where the value of lies that satisfies the Mean Value Theorem of Derivatives.


5.
The solid bar below is conducting along its axis while heat is being lost by convection from the ends.  Derive an equation showing the temperature TL as a function of TL-∆x, and Ta.


Note: 
qconv = h(TL-Ta)  and  qcond = -k(dT/dx)


Answer:
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� EMBED Equation.3  ���
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The value of x where the slope is � EMBED Equation.3  ��� 
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