South Dakota School of Mines and Technology Department of Metallurgical and Materials Engineering

Met 426/526 Final (HQ #3) May 6, 2002

Problems 1 – 3 refer to the following situation:

A 200 ton steel melt of 0.3 wt% C and 0.0067 wt% 0 at 1600°C needs to be deoxidized to remove 99 % of the oxygen.

<u>Data:</u>

 $\frac{1}{C} + \underline{0} = C0_{(g)} \qquad K_{1600} = 500$ <u>Si</u> + 2<u>0</u> = Si0_{2(s)} $K_{1600} = 3.5 \times 10^4$ Activities of Si, 0, and C, in %, f_C, f_O, f_{Si} all unity.

- 1. What is the minimum amount of ferrosilicon (50% Si) that needs to be added? You may keep the current slag having an activity of SiO_2 of 0.1 or replace it with a slag that will have an activity of SiO_2 of 0.001, both relative to pure solid SiO_2 .
- 2. What vacuum (pressure in atmospheres) must be reached in a vacuum degasser?
- 3. What volume (in liters, STP) of argon is needed?
- 4. Describe why argon and Si are used in the AOD process for making stainless steel. Use the Ellingham Diagram in your description.

- 5. Write the equations that describe a kinetic model (of your choice) for steel carburization that includes
 - solid diffusion resistance
 - gas diffusion, and
 - reaction kinetics.

There is no need to derive an overall rate expression. Only write the mathematical expressions describing each part of the model and label each. A sketch would be a good idea.