Pumping Problem

Find the size of pipe that minimizes the total annual capital plus operating cost assuming a 10 year service life and $\mathrm{i}=12 \%$. Assume the pipe's installed cost per foot is $\$ 65+$ $\$ 100 *(\mathrm{Dia} / \mathrm{in})^{\wedge} 1.5$ with a salvage value of $\$ 10 *$ (Dia/in) per ft. Schedule 40 steel pipe is available in nominal integer inch diameter increments. The pump runs 50% of the time. Energy costs are $\$ 60 / \mathrm{MW} * h r$

$$
\begin{aligned}
& G L D:=7 \quad E L D:=15 \quad \Delta z:=29 \cdot m \quad f:=0.004 \quad C:=\frac{0.00000006}{W \cdot h r} \mathrm{k} \$ / \mathrm{W} * \mathrm{hr} \\
& W:=\pi \cdot 1 \cdot m^{2} \cdot 10 \cdot m \cdot 1000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot \frac{1}{1200 \cdot \mathrm{~s}} \\
& j:=1,2 . .500 \\
& d_{j}:=2 \cdot c m+\frac{j-1}{40} \cdot \mathrm{~cm} \quad D:=d \quad V:=\frac{10 \cdot m}{1200 \cdot s} \cdot\left(\frac{2 \cdot m}{D}\right)^{2} \quad M p:=(\Delta z \cdot g) \\
& M e_{j}:=\left(\left(2 \cdot f \cdot\left(\frac{20 \cdot m}{D_{j}}+G L D+E L D\right)+\frac{1}{2} \cdot 0.5+\frac{1}{2} \cdot(0.8+1)\right) \cdot V_{j}^{2}\right) \\
& H P p_{j}:=M p \cdot W \quad H P e:=M e \cdot W \quad p c t F L:=\frac{H P e}{H P e+H P p} \\
& \text { AnnualOpCost:=}(H P p+H P e) \cdot 12 \cdot 365 \cdot h r \cdot C
\end{aligned}
$$

$$
p c t F L_{500}=2 .
$$

$$
\begin{aligned}
& \text { K\$/yr } \\
& \text { D (in) }
\end{aligned}
$$

Engineer Economics determination of minimum Total Cost

$$
\begin{array}{ll}
p c t:=12 \% & n:=12
\end{array} \quad L:=20 \cdot m ~ 子, ~ p c t \cdot(1+p c t)^{n}=0.161 \quad A_{-} F:=\frac{p c t}{A_{-} P:=\frac{p^{n}}{(1+p c t)^{n}-1}=0.041}
$$

Present Cost

$$
C P:=\left(\frac{30}{f t}+\frac{70}{f t} \cdot\left(\frac{D}{1 \cdot i n}\right)^{1.2}\right) \cdot \frac{L}{1000} \quad S V:=\frac{10}{f t} \cdot L \cdot \frac{D}{i n} \cdot \frac{1}{1000}
$$

Annualized Capital Cost less SV in K\$

$$
A C:=\left(C P \cdot A_{-} P-S V \cdot A_{-} F\right)
$$

Total Cost = AC + Annual Operating Cost $T C:=A C+$ AnnualOpCost
MinCost $:=\min (T C)=5.738$

Find i at 3.07" (see table below): solve for i

$$
\begin{aligned}
& d_{j}:=2 \cdot \mathrm{~cm}+\frac{j-1}{40} \cdot \mathrm{~cm} \\
& J:=\operatorname{round}\left(\frac{((3.07 \cdot i n-2 \cdot \mathrm{~cm}) \cdot 40+1 \cdot \mathrm{~cm})}{\mathrm{cm}}, 0\right)=233
\end{aligned}
$$

Use J = 233 at 3" nominal Dia. pipe
MinAnnualCost_At_3_in_Dia $:=T C_{J}=5.738$

The following chart shows the relationship of the various NPS sizes and Schedules and the actual Outside Diameter and Wall Thickness.

nomital PIPESTE	OD	SCH 5	SCH 10	SCH 40	SCCH 80
$1 / 2^{*}$	0.84	0.065	0.093	0.109	0.147
$3 / 4^{\circ}$	1.05	0.065	0.083	0.113	0.154
T	1.315	0.065	0.109	0.133	0.179
1-1/4*	1.66	0.065	0.109	0.14	0.191
1-1/2*	1.9	0.065	0.109	0.145	0.2
2^{*}	2.375	0.083	0.109	0.154	0.218
2-1/2	2.875	0.083	0.12	0.203	0.276
$3{ }^{*}$	3.5	0.083	0.12	0.216	0.3
3-1/2*	4	0.083	0.12	0.226	0.318
$4 *$	4.5	0.083	0.12	0.237	0.337
REF https://www.atc-mechanical.com		3" Schedule 40 - ID=3.07"			

Optimal Design Cost Summary (K\$)

AnnualCapitalCost $:=A C_{J}=3.084 \quad$ AnnualOpCost ${ }_{J}=2.654$

$$
\begin{aligned}
& \text { pctCostForEnergy }:=\frac{\text { AnnualOpCost }_{J}}{A C_{J}+\text { AnnualOpCost }_{J}}=46.3 \% \\
& \text { pctCostForPiping }:=\frac{A C_{J}}{A C_{J}+\text { AnnualOpCost }_{J}}=53.7 \%
\end{aligned}
$$

$$
p^{p t} \text { PowerForFrictionalLoss }:=\text { pctFL }_{J}=26.3 \%
$$

$$
\text { pctPowerUsedForMovingWaterUp }:=1-\text { pctFL }_{J}=73.7 \%
$$

