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4 – Boundary and Initial Conditions for Partial Differential Equations  
 
In the previous chapter the boundary conditions have been the simplest of all possible boundary 
conditions: fixed temperature.  In this chapter four other boundary conditions that are commonly 
encountered are presented for heat transfer: zero flux, fixed flux, convection, and radiation.  Upon 
knowing how these conditions are applied in numerical solutions to arrive at heat conduction solutions, 
the student should be able to adapt the methods to essentially any boundary condition encountered in 
partial differential equations. 
 
The following discussion, unless otherwise noted, assumes that a heat conduction in a solid problem is 
being solved.  The partial differential equation to be solved involves a first partial of T with respect to t, 
time, and second partials of T with respect to position. 
 
4.1 Fixed 
This type of boundary condition is the simplest form of boundary condition in that one may enter a 
number for the value of the dependent value at the boundary as demonstrated in Chapter 3. 
 
4.2 Zero Flux 
A zero flux boundary condition requires that no heat flows across the zero-flux boundary.  This condition 
is encountered when the surface is perfectly insulated or when it is the plane of symmetry.  In the case of 
symmetry, the temperature is a maximum (on cooling) or a minimum (on heating) along the plane of 
symmetry.   Regardless of the reason for the boundary being a zero-flux boundary, Fourier’s Law of Heat 
Conduction requires the first derivative of T with respect to the direction perpendicular to the zero flux 
surface to be zero. 
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If the first derivative is zero then the temperature for the boundary may be set equal to the temperature 
one step inward from the surface.  Of course, this is an approximation as are all numerical solutions.  
Therefore if the zero-flux surface is at x=0, then the boundary temperature must be  
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4.3 Fixed Flux 
A fixed flux surface is commonly encountered when the solid is generating heat (electrical resistance 
heating, nuclear decay, induction heating, etc.) that eventually (at SS) must be removed from the solid.  It 
does so by reaching a high enough temperature gradient at the surface such that the flux at the surface, as 
determined by Fourier’s Law of Heat Conduction, conducts heat from the solid at the same rate as 
the heat is generated.  In this discussion, the surface temperature will be fixed to assure the specified 
heat conduction at the surface as fixed by Fourier’s Law of Heat Conduction. 
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Solving for the boundary temperature gives 
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Clearly the zero flux case is a special case of the fixed flux boundary condition.  That is, when the fixed 
flux is zero,  Eqs. (4.3) and (4.4) are the same.   
 
4.4 Convection 
 
Perhaps the most common boundary condition encountered is the convection boundary condition.  Heat 
lost from a solid (or liquid) surface may be described as follows: 
 
  conv S fq h(T T )   (4.5) 

 
where h is the heat transfer coefficient (given in this course) and Tf is the temperature of the fluid 
exchanging heat with the solid.  Since the boundary surface cannot accumulate any energy as shown in 
Fig 4.1,  
 
 conv condq q   (4.6) 

 
Substituting Eq. (4.5) and Fourier’s Law of Heat Conduction into Eq. (4.6), and solving for TB gives the 
desired equation for the boundary condition. 
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Figure 4.1.  Heat balance for a surface during convective heat transfer 
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4.5 Radiation 
Radiation flux from a hot surface is given by the Stephan-Boltzmann Equation 
 

   4 4
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where  is emissivity,  is the Stephan-Boltzmann Constant, and TSurr is the temperature of the region the 
surface “sees”.  As before, 
 
 Rad condq q  (4.9)\ 

 
but unlike for convection this equation cannot be explicitly solved for TB.  Therefore, a radiation 
boundary condition requires a numerical root finding routine as discussed in the chapter on root finding.   
 
 
4.6 Summary 
Table 4.1 summarizes the equations to be placed at the boundary for each of the above five conditions. 
 
 

Table 4.1.  Summary of boundary condition for heat transfer and the 
corresponding boundary equation 
Condition Equation 

Fixed Any value ( may vary) 
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4.7 Notation 
In the following chapters the notation shown in Table 4.2 is often used for the temperatures appearing 
above. 
 
 

Table 4.2.  Common notation for boundary equations 
Notation in Chapter 4 Alternate notation 

TB TS 

Tx TS- 

 


