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Chapter 9  
Gibbs Energy for Reactions Involving Components Not in Their Standard State  
 
Chapter 6 described how enthalpy and entropy data may be used to calculate the Gibbs energy 
change for a reaction at any T when all the involved reactants and products are in their standard 
states:  
 
 o o o

T T TG H T S      (9.1) 

 
Once this capability is established, the question naturally arises as to how to account for Gibb’s 
energy changes when some are all of the components are in a state other than their standard 
states. This question is really a question about the Gibbs energy changes that occur when 
components move from their standard states to their non-standard states.  For a gas, this would 
involve being at some fugacity (pressure, if ideal gas) other than 1 atmosphere.  For a liquid or 
solid it would be the Gibbs energy change associated with the component going into solution. 
 
Gases 
The treatment of Gibbs energy changes for solutions is patterned after the Gibbs energy changes 
for gases.  In the cases of an ideal gas, the Gibbs energy change is the integrated fundamental 
equation for Gibbs energy at constant T 
 
  lno o

i i i iG G RT p p   (9.2) 

 
where o

ip is the standard pressure of 1 atm. This is more often written using the chemical 

potential, which is simply the molar Gibbs energy  
 
  lno o

i i i iRT p p    (9.3) 

 
If the gas does not behave ideally, then the fugacity is introduced as the value needed to 
determine the actual Gibbs energy change 
 
  lno o

i i i iRT f f    (9.4) 

 
where o

if is unity. 

 
Experimental work is needed to compute fugacities, which are then used to compute adjustments 
in Gibbs energy for a gas as it moves away from its standard state.  Consequently, Equation (9.4) 
is the formal thermodynamic definition of fugacity, implicit though it is. 
 
Solutions 
In the case of non-aqueous solutions, such as encountered in alloys, slags, magma, ceramics, the 
Gibbs energy of solution is written as  
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  lno o
i i i iRT a a    (9.5) 

 
where ai is the activity of component i in the solution of interest and o

ia is the activity of the 

standard state, which is always unity.  The activity must be measured for each solution for which 
the change in Gibbs energy for a component in solution is needed.  This a burdensome task, but 
over the 20th century considerable solution behavior has been determined for a wide range of 
metallic systems and to a lesser extent molten salts and ceramic systems.  Additionally, by the 
turn of the century, considerable progress has been made in constructing useful theoretical 
solution models from which estimates of solution properties such as Gibbs energies of solution 
are obtained. 
 
The simplest solution model is that of the ideal solution.  Even though it is rarely, if ever, 
observed, a considerable number of systems are nearly ideal.  The concept of ideal is also useful 
because it is a reference from which the behavior of real solutions may be compared.  Also, in 
the absence of any solution data, it is the starting assumption for a solution’s behavior. 
 
In an ideal binary solution of components i and j, one would expect i and j to interact with each 
other just as they would interact with themselves.  This is to say that the i-i, j-j, and the i-j bonds 
are the same.  In such a solution, the equilibrium pressure of either component above the solution 
would be expected to be directly proportional to its mole fraction. For example, if the solution 
were 20 atomic percent j, the pressure of j would be 0.20 o

jp  and the pressure of i would be 

0.80 o
ip where the superscript denotes the vapor pressure of the pure component.  Figure 9.1 

shows this idealized behavior. 
 
Equation (9-5) may be written more simply for ideal solutions, because the pressure of a 
component then varies directly with mole fraction.  Consider the calculation path in Figure 9.2 
along which the Gibbs energy of solution is computed.  The gases have been assumed to exhibit 
ideal gas behavior.  If the gaseous components do not behave ideally, the pressures would be 
written as fugacities. 
 
Since each gas is in equilibrium with its corresponding liquid, 1G  and 3G are zero and the 

change in Gibbs energy for a component going into solution is then 2G . Substituting the direct 

relationship of the solution vapor pressure with mole fraction gives 
 

 ln
o

o i i
i i o

i

x p
G G RT

p
   (9.6) 

 
or 
 lno

i i iRT x    (9.7) 

 
This relationship is true for both liquid and solid solutions. 
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Aqueous Solutions 
In an ideal aqueous solution, the standard state for a dissolved component in solution is chosen 

as the one molar solution, 1o
i

gmole
C

liter
    .  The use of brackets indicates molarity.  Therefore, 

 

 
 

ln io
i i o

i

C
RT

C
  

  
 (9.8) 

 
For real aqueous solutions 

i(g, in equil with pure, liquid i) →  i(g, in equil with liquid i in solution) 

i(pure, liquid i)                 =   i(liquid i in solution) 

3 0G   
1 0G 

2 ln i
o
i

p
G RT

p

 
   

 
 

1 2 3
o

i iG G G G G        

Figure 9.2 – Calculation schematic for determining the Gibbs energy change for an 
ideal solution
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Figure 9.1 – Pressure variation for an ideal binary solution  
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 

ln io
i i o

i

a
RT

a
  

  
 (9.9) 

 
As with the previous real behavior,  ia  must be measured although there are theoretical models 

for estimating the value.  The standard state is a hypothetical 1 molar solution that behaves as the 
infinitely dilute solution.  This seeming unusual convention is very useful because the solution 
becomes more ideal as it becomes more dilute, which is commonly the concentration of many 
solutions of interest.  
 
The Big Six Equations  
The six equations above describe the change in Gibb’s energy as components move from their 
standard states and may be summarized as follows: 
 
 
 Gas Ideal:  lno

i i iRT p     (9.10) 

  Real:  lno
i i iRT f     (9.11) 

 
 Solution  Ideal: lno

i i iRT x     (9.12) 

  Real  lno
i i iRT a     (9.13) 

 
 Aqueous solution Ideal:  lno

i i iRT C     (9.14) 

  Real:  lno
i i iRT a     (9.15) 

 
 
Again, experimental data are required to determine the values of the fugacity or activities in non-
ideal systems.  If the system is ideal, the pressure, mole fraction, or molarity may be used. 
 
The fugacity and activities in Equations(9.11), (9.13), and (9.15) may be written 
 
 Real gas:   lno

i i i iRT p     (9.16) 

  where  i i if p   

 
 Real solution:  lno

i i i iRT x     (9.17) 

where  i i ia x   

  
 Real aqueous solution:   lno

i i i iRT C     (9.18) 

  where     i i ia C   
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Ideal solution behavior is a theoretical construct that assumes each constituent atom (or 
molecule) in solution interacts with every other atom in the same way it interacts with atoms of 
the same kind.  The activity coefficient i is a measure of departure from the ideal behavior.  If a 

gas or solution is ideal, i =1. A system with stronger-than-ideal bonding interactions among 

solution components exhibits a i <1 (negative departure from ideal behavior) while weaker-than-

ideal interactions results in a i >1 (positive deviation from ideal behavior). The activity 

coefficient must always be greater than zero.  In solutions where the pure component is the 
standard state, i  can never be so large that i ix  exceeds unity because the activity cannot 

exceed the activity of the pure component.  This is not a constraint in the cases of i ip  and 

 i iC  since gases and aqueous solutions often have fugacities and aqueous activities that exceed 

unity. 
 
Chemical Reactions 
For the general reaction 
 
 aA(g) + bB(s) =cC (l) + eE(aq) (9.19) 
 
the Gibb’s energy change for the reaction is the difference in the Gibb’s energy of the products 
and the reactants 
 
 C E A BG cG eG aG bG      (9.20) 

 
Each G term may be written in terms of the molar Gibbs energy at constant temperature given by 
Equations (9.16), (9.17), and (9.18) to give 
  

 
 

ln
ec

C Eo
a b

A B

a a
G G RT

f a

 
     

  
 (9.21) 

 
where the stoichiometric coefficients have been moved inside the logarithmic terms. Equation 
9.18 is more conveniently written 
 
 lnoG G RT Q     (9.22) 
 
where Q is a measure of prevailing reaction conditions 
 

 
 ec

C E
a b

A B

a a
Q

f a

 
  
  

 (9.23) 

 
At reaction equilibrium, 0G  and Equation (9.22) becomes 
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 lnoG RT K    (9.24) 
 
where Q is the particular measure of prevailing conditions called the equilibrium constant that 
brings the reaction into equilibrium.  Whenever there are two or more terms comprising K, there 
are infinite combinations of those terms that equal K.  This is to say that each independent 
reaction adds a constraint to the behavior of the reacting system.  This concept is pursued in the 
chapter on the Gibbs Phase Rule.  
 
A similar equation may be written for any reaction.  If a gas involved in a reaction behaves 
ideally, which is often the case, i if p .  Mole fractions may be used for ia  for non-aqueous 

ideal solutions and    i ia C  for ideal aqueous solutions.  Such assumptions are questionable 

for non-aqueous solutions but are quite good for weak aqueous solutions. 
 
Gaseous Reactions 
For the general reaction 
 
 aA(g) + bB(g) =cC (g)  (9.25) 
 
the Gibbs energy change may be computed from  
 
 lnoG G RT Q     (9.26) 
 
where 
 

 
c

C
a b

A B

p
Q

p p

 
  
 

 (9.27) 

 
assuming ideal gas behavior.  As the reaction proceeds in a closed system from left to right, the 
value of Q decreases.  The reaction will continue until equilibrium is reached. The value of Q 
will then have decreased to equal the equilibrium constant K.  This may be seen mathematically 
by substituting Equation (9.24) into equation (9.26) to give 
 

 ln
Q

G RT
K

   (9.28) 

 
which easily shows that when Q < K, the reaction proceeds to the right, when Q > K the reaction 
proceeds to the left, and when Q = K the reaction is at equilibrium. 
 
The equilibrium constant for Reaction (9.25) is 
 

 
c

C
a b

A B Eq

p
K

p p

 
  
 

 (9.29) 
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where the gases are sufficiently ideal to allow the use of pressure rather than fugacity.  
Furthermore, it is understood that each pressure is divided by the standard pressure of 1 atm, 
which is to say the pressures are in atmospheres.  Consequently, the equilibrium constant is 
always unitless. 
 
 
Reaction Extent Computations 
A commonly encountered situation is determining the extent of reaction needed to achieve 
equilibrium from a given initial non-equilibrium state.  For example, consider the final reaction 
in the Haber Process for ammonia production 
 
 N2 (g) + 3H2 (g) = 2NH3 (g)  

oG   (9.30) 
 
where initially A, B, and C moles of nitrogen, hydrogen, and ammonia are in a reactor at T and a 
fixed pressure PT.  The following algorithm finds the equilibrium moles of each gas. 
 
Algorithm 
 Step 1:  Write the reaction and assign a reaction extent. 
 
  Let x = the moles of H2 that react. 
 
 Step 2: Perform a mole balance including the equilibrium partial pressures 
 
   

Species Initial moles Equilibrium moles pi = xiPT 

N2 A A-x 
 

 
A x

A B C 2x TP


  
 

H2 B B-3x 
 

 
3x

A B C 2x T

B
P


  

 

NH3 C C+2x 
 

 
C+2x

A B C 2x TP
  

 

total  A+B+C-2x  
 
 Step 3:  Substitute the partial pressures into K 
 

  

 
 

 
 

 
 

C+2x

A B C 2x

A-x C-3x

A B C 2x A B C 2x

c

T

a b

T T

P

K

P P

 
    

   
           

 (9.31) 

 
 Step 4:  Solve for x 
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This typically requires a numerical method such as Goal Seek® in Microsoft Excel®.  
However, when c = a + b, Equation (9.31) simplifies considerably to 
 

 
 

   
C+2x

A-x C-3x

c

a bK   (9.32) 

 
 
A trial and error is facilitated by recognizing that the solution is bounded by those values of x 
that keep the final moles greater than zero.  In this case x<A or x <B/3, whichever is smaller and 
x>-C/2. 
 
 
Ellingham Diagram 
An Ellingham Diagram is a graph of the standard Gibbs energies as a function of temperature.  
Each reaction involves one mole of O2 as a reactant.  For example, one such reaction may be 
written 
 
 M + O2 = MO2  (9.33) 
 
where M represents tetravalent elements such as Ti or Si. Such reactions differ with the 
stoichiometry of the oxidized compound as would be the case for trivalent Al reacting with one 
mole of O2. 
 
 4/3 M + O2 = 2/3 M2O3  (9.34) 
 
where M might represent trivalent Al or Cr.  Figure 9.3 is a typical Ellingham Diagram. The 
most stable oxides, which are formed from the most reactive metals, will appear at the bottom of 
the diagram while the least stable oxides, which are formed from more noble metals, will appear 
near the top.  The diagram takes on additional meaning if M and its oxidized form are considered 
to be in their standard states.  In this case 
 

 
2

2

0 1
ln ln O

O

G RT RT p
p

 
     

 
 (9.35) 

 
since the activities of both M and the oxidized form are unity.  The vertical scale of the plot is 
both oG and RT ln Po2 where the Po2 is the pressure of O2 in equilibrium with M and its 
oxidized form.  Comparison of Equation (9.35) with Equation (9.10) gives yet another name for 
the vertical scale of the Ellingham Diagram: the relative chemical potential of oxygen 

2O  

 
 

2 2 22
ln

O

o
O O ORT p       (9.36) 

 
The usefulness of the Ellingham is greatly enhanced by the addition of three nomographs: O2 
pressure, H2/H2O ratio, and the CO/CO2 ratio. 
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O2 Nomograph 
Lines of constant Po2 will pass through the origin and have a slope of Rln(Po2).  Placing such 
lines on the diagram would add to an already-crowded diagram.  However, the Po2 information is 
added as tick marks on a nomograph showing where lines of selected Po2’s would intersect the 
nomograph.  Since lines of constant Po2 all pass through the origin, a line for any particular Po2 
may easily be constructed with the origin and the nomograph tick mark of interest. 
 
 
H2/H2O nomograph 
The reaction for the H2/H2O line is 
 
 2H2 + O2 = 2H2O (9.37) 
 
At equilibrium 
  

 2 2

2

2 2 2

2

0 1
ln ln 2 lnH O H O

O
H O H

p p
G RT RT p RT

p p p

      
                      

 (9.38) 

Since 0G = A+BT, Equation (9.38) may be written 
 

 2

2

2

ln 2 ln H
O

H O

p
RT p A B R T

p

  
         

 (9.39) 

 
This shows that lines of constant H2/H2O ratio radiate from the point (0 K, A).  The H2-H2O line 
shown on the diagram assumes that the pressures of H2 and H2O are unity, or more generally, 
that the H2 /H2O ratio is unity.  If the ratio were to exceed unity, the slope of the line would 
decrease compared to the drawn H2-H2O line.  One may easily construct lines of selected H2 
/H2O ratios varying the ratio by powers of 10 and writing Equation (9.39) in the Log form 
 

 2

2

2

ln 2*2.303 log H
O

H O

p
RT p A B R T

p

  
         

 (9.40) 

 
Therefore, an H2 /H2O ratio of 10-10 would change the slope of the plotted H2 -H2O line 
downward by 95.1 cal/K. 
 

  102*2.303* 10 9.51*10
*

cal
slope B RLog B

K gmole
     (9.41) 

 
This is more conveniently written as  
 

 95.1
1000 *

Kcal
slope B

K gmole
   (9.42) 
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If one moves out from 0 K to 1000 K (727 C) and moves downward 95.1 Kcal from the plotted 
H2 -H2O line, a point on the line having an H2 /H2O ratio of 1010 is located.  Extending a line 
from this point and the point through which all H2 -H2O lines radiate (0 K, A), gives a line along 
which H2 /H2O = 1010.  Drawing these lines would add considerable confusion to the diagram so 
rather than drawing the actual lines, a nomograph along the right side of the Ellingham Diagram 
is constructed that shows the intersection of selected H2 /H2O ratios with the nomograph. 
 
CO/CO2 nomograph 
The reaction for the CO/CO2 line is 
 
 2CO + O2 = 2CO2 (9.43) 
 
At equilibrium 
  

 2 2

2

2

2

0 1
ln ln 2 lnCO CO

O
CO O CO

p p
G RT RT p RT

p p p

     
                

 (9.44) 

 
This has the same form as Equation (9.38) and so the same result is obtained for the CO – CO2 
line as for the H2 - H2O line. 
  

 
2

2

ln 2 ln CO
O

CO O

p
RT p A B R T

p 

  
         

 (9.45) 

 
Of course, the values of A and B differ from the values for the H2 - H2O line. 
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Figure 9.3 Ellingham Diagram for User-Selected Oxides                              © 2006 Stanley. M. Howard

Data from Thomas B. Reed, Free Energy of Formation of Binary Compounds, MIT Press, Cambridge, MA, 1971.      
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Figure 9.3 Ellingham Diagram 


