Ellingham Diagram Interpretation

The Ellingham Diagram is a plot of the standard Gibbs energy of formation (see below) for a one mole of a particular anion (S in this explanation). Therefore, in this case every reaction is based on one mole of S_2 gas as a function of T for every sulfide.

For example:

 $\begin{array}{ll} M + S_2 = & MS_2 \\ 2M + S_2 = 2MS \\ 2M + S_2 = & M_2S_2 \\ 3M + S_2 = & M_3S_2 \end{array}$

Using one mole of S₂ makes all reactions immediately comparable.

For example if one wishes to compare the relative stability of AI_2S_3 and FeS_2 , one reaction is subtracted from the other as follows:

 $\begin{array}{l} [3AI + S_2 = AI_3S_2 \quad \Delta G^{\circ}_{AI3S2} \] \\ - \ [2Fe + S_2 = FeS_2 \quad \Delta G^{\circ}_{FeS2} \] \\ \hline 3AI + FeS_2 = 2Fe + AI_3S_2 \ \end{array} \Delta G^{\circ}_{R} = \Delta G^{\circ}_{AI3S2} - \Delta G^{\circ}_{FeS2} \end{array}$

If $\Delta G^{\circ}_{R} < 0 \rightarrow$ $\Delta G^{\circ}_{R} > 0 \leftarrow$ $\Delta G^{\circ}_{R} = 0$ Equilibrium

However, it is much easier from a practical perspective to just think as follows:

- S goes from high chemical potential to low just as current runs from high voltage to low voltage.
- The vertical scale is also S relative potential (relative to S₂ gas at 1 atm).
- The basis of the relative state is of no consequence if we simply want to know where the S ends up.
- Since S "flows" (like current) from high to low potential, it goes to the lower sulfides.
- That is to say, the sulfides at the bottom are more stable that those at the top.
- A corollary is that the METALS at the top are NOBLE and metals at the bottom are REACTIVE.

More Info on Chemical Potential

For the reactions

$$M + S_2 = MS_2$$

 $2M + S_2 = 2MS$
 $2M + S_2 = M_2S_2$
 $3M + S_2 = M_3S_2$

The standard Gibbs energy of formation is

 ΔG_{R}° = -RT ln 1/P_{S2} = RT ln P_{S2} if the metal and the sulfide activities are both unity (or the same).

Generally, all reactions are thought of as involving the pure metal and sulfide and gases other than S_2 as being at 1 atm.

The term RT ln P_{S2} is also known as the relative chemical potential of S₂ gas from the expression $\mu_{S2} = \mu^{o}_{S2} + RT \ln P_{S2} / P^{o}_{S2}$ since $P^{o}_{S2} = 1$ atm (more precisely fugacity =1).

Therefore, the relative chemical potential is

 $\Delta \mu_{S2} = \mu_{S2} - \mu^o_{S2} = RT \ln P_{S2}$, which is an alternative name for the vertical coordinate of the Ellingham diagram.

So, the vertical scale of the Ellingham Diagram is

$$\Delta G_{R}^{\circ} = RT \ln P_{S2} = \Delta \mu_{S2}$$

If one thinks of the vertical scale as the relative chemical potential, it makes it akin to "S–voltage" and S goes to the compound having the lowest S-potential just as electrical current flows to the lowest available potential. Voltage can be relative to anything – usually a stake at your home sets the ground as 0. The relative sulfur potential is set at 0 when the pressure of S_2 is 1 atm.